Chapter 5

Integration

5.1 Antiderivatives and Indefinite Integration

Objectives: By the end of this section student should be able to:

- Find Antiderivatives
- Use indefinite integral notation for Antiderivatives
- Use Basic Integration Rules to fine Antiderivatives

Definition: (Antiderivative)
A function \mathbf{F} is an antiderivative of a function \boldsymbol{f} on an interval \mathbf{I}, if $\boldsymbol{F}^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$ for all x in \mathbf{I}.
Example1: Find an antiderivative for each of the following.
a) $f(x)=0$
b) $f(x)=1$
c) $f(x)=x$
d) $f(x)=x^{2}$
e) $f(x)=x^{3}$
f) $f(x)=x^{n}$
g) $f(x)=\sin x$
h) $f(x)=\cos x$
i) $f(x)=e^{x}$
j) $f(x)=1 / x$

Definition:
The family of antiderivatives of a function f is denoted by the notation $\int f(x) d x$.

Indefinite Integral

$\int \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d x}$ is called the indefinite integral of \boldsymbol{f}. If \boldsymbol{F} is an antiderivative of \boldsymbol{f}, then $\int f(x) d \boldsymbol{x}=\boldsymbol{F}(\boldsymbol{x})+\boldsymbol{C}$, where \boldsymbol{C} is an arbitrary constant.

Example 2: Find the definite integral
a) $\int 0 \boldsymbol{d} \boldsymbol{x}$
b) $\int 1 d x$
c) $\int x d x$
d) $\int x^{2} d x$
e) $\int \sin x d x$
f) $\int \cos x d x$

Integration Rules

1) Power Rule: For any real number $\boldsymbol{n} \neq$ 1. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$

Example 3: Find the anti-derivative of each
a) $\int x^{3} d x$
b) $\int x^{4} d x$
c) $\int \frac{1}{x^{2}} d x$
d) $\int \sqrt{x} d x$
e) $\int d x$
2) Constant Rule: For any constant $\boldsymbol{k} \int k f(x) d x=k \int f(x) d x$

Example 4: Find the anti-derivative of each.
a) $\int 18 x^{8} d x$
b) $\int 5 d x$
c) $\int 9 x^{-5} d x$
3) Sum or Difference Rule: $\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$

Example 5: Find the anti-derivative of each.
a) $\int\left(5 x^{2}-6 x+3\right) d x$
b) $\int\left(4 x^{11}-7 x^{3}+4\right) d x$
c) $\int x\left(x^{2}-3\right) d x$
d) $\int 12 x^{3} \sqrt{x} d x$
e) $\int \frac{\sqrt{x}+3}{x^{2}} d x$
4) Rules for Exponential and Logarithmic Functions
a) $\int e^{x} d x=e^{x}+C$
b) $\int e^{k x} d x=\frac{1}{k} e^{x}+C, k \neq 0$
c) $\int x^{-1} d x=\ln |x|+C$

Example 6: Find the anti-derivative for each.
a) $\int 3 e^{x} d x$
b) $\int e^{2 x} d x$
c) $\int \frac{x^{4}+1}{x} d x$
d) $\int x^{3}\left(x+x^{-4}\right) d x$
e) $\int\left(e^{2 x}+4 x\right) d x$

Example 7: Find the Profit function $P(x)$, if $P^{\prime}(x)=4 x-5$ and $P(1)=4$.

Recall that if the function $s(t)$ gives the position of a particle at time t, then its velocity $\mathrm{v}(\mathrm{t})$ and its acceleration $\mathrm{a}(\mathrm{t})$ are given by: $v(t)=s^{\prime}(t)$ and $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$.

Example 8: For a particular object in motion: $\boldsymbol{a}(\boldsymbol{t})=\boldsymbol{t}^{2}+\mathbf{1}$ and $v(0)=6$. Find $\boldsymbol{v}(\boldsymbol{t})$.

Integration by Substitution

Example: Evaluate the following indefinite Integrals
a) $f(x)=\int(3 x-5)^{2} d x$
b) $f(x)=\int(3 x-5)^{5} d x$

Theorem (Integration by Substitution)

If an integral is given in the form $\int f(g(x)) \cdot g^{\prime}(x) d x$, then we can use the substitution $\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})$ and the given integral can be reduced to the form:

$$
\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(u) d u
$$

Note: Making the substitution $\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})$ usually makes it easy to find the antiderivative of the original integral

Example 1: Evaluate the following indefinite Integrals using the substitution method
a) $\int(3 x-5)^{5} d x$
b) $\int 6(3 x+5)^{3} d x$
c) $\int\left(x^{2}-1\right) e^{x^{3}-3 x} d x$
d) $\int z^{2} \sqrt{z^{3}+12} d x$
e) $\int \frac{2 y}{y^{2}+1} d$
f) $\int \frac{4 x+3}{2 x^{2}+3 x+1} d x$
g) $\int \frac{2}{5 y+9} d x$

Example 2: Suppose the marginal revenue (in dollars) from the sale of x jet planes is given by $R^{\prime}(x)=2 x\left(x^{2}+50\right)^{2}$. Find the total revenue function $R(x)$ if the revenue from 3 planes is $\$ 206,379$.

General Rule for Substitution Method

In general, for the types of problems we are concerned with, there are three cases. We choose \boldsymbol{u} or some other variable to be one of the following:

1. The quantity under a root or raised to a power;
2. The exponent of e ;
3. The expression in the denominator.

Area and Definite Integral

In this section we are going to find and approximate the area under a curve and above the x-axis.
Consider the region \mathbf{R} bounded by the graph of the function $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$, the $\mathbf{x}-\mathbf{a x i s}$ on the interval [a, b].

We want to Find (estimate) the area of the region \mathbf{R} on $[\boldsymbol{a}, \boldsymbol{b}]$. See graphs below
a) Area approximated by 10 rectangles

Ten rectangles of equal width
b) Area approximated by 20 rectangles

Twenty rectangles of equal width

Note: The more the rectangles the better the approximation for the area of the region \mathbf{R}
In case there are \mathbf{n} rectangles; the total area under the curve is approximated by the sum of the areas of the n - rectangles. With sigma notation the approximation to the total area becomes:

$$
\text { Area of the } \mathbf{n} \text { - rectangles }=\sum_{i=1}^{n} f\left(\boldsymbol{t}_{i}\right) \Delta x_{i} \text {, where } \Delta x_{i}=x_{i}-x_{i-1} \text { is }
$$

the change in \boldsymbol{x} and $\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{i}}\right)$ is the height of the rectangle at the \boldsymbol{x}-value $\boldsymbol{t}_{\boldsymbol{i}}$
The exact area is defined to be the limit of this sum (if the limit exists) as the number of rectangles \boldsymbol{n} increases without bound.

$$
\text { Exact Area }=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} f\left(t_{i}\right) \Delta x_{i}\right)
$$

Note: The Sum $\sum_{i=1}^{n} f\left(\boldsymbol{t}_{\boldsymbol{i}}\right) \Delta \boldsymbol{x}_{\boldsymbol{i}}$ is called the Riemann Sum for the function f on the interval [a, b]

Definition (The Definite Integral)

If \boldsymbol{f} is defined on an interval $[\boldsymbol{a}, \boldsymbol{b}]$, the definite integral of \boldsymbol{f} from \boldsymbol{a} to \boldsymbol{b} is given by:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} f\left(t_{i}\right) \Delta x\right)
$$

provided this limit exists, where $\Delta \boldsymbol{x}=(\boldsymbol{b}-\boldsymbol{a}) / \boldsymbol{n}$ and $\boldsymbol{t}_{\boldsymbol{i}}$ is any value of x in the $\boldsymbol{i}^{\boldsymbol{t h}}$ interval $\left[\boldsymbol{x}_{\boldsymbol{i}-\mathbf{1}}, \boldsymbol{x}_{\boldsymbol{i}}\right]$.

Example 3: Approximate the area under the curve and above the x -axis using n rectangles. Let the height of each rectangle be given by the value of the function at the left side of the rectangle. $f(x)=2 x+3$ from $\mathrm{x}=0$ to $\mathrm{x}=2 ; \mathrm{n}=4$

Example 4: Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. $f(x)=2 x^{2}+x+3$ from $\mathrm{x}=0$ to $\mathrm{x}=6 ; \mathrm{n}=6$

Example 5: What is the exact value of the area under the curve in Ex 3 and Ex 4?
Example 5: Calculate the Riemann Sum for the given integral consider midpoints in the subintervals: with $\mathrm{n}=6$ for the integral $\int_{3}^{6}(4 x-7) d x$

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus makes evaluation of the definite integral much easier. The Fundamental Theorem of Calculus establishes a connection between the two branches of calculus: Differential Calculus and Integral Calculus. The Fundamental Theorem of Calculus has two parts.

The Fundamental Theorem of Calculus, Part 1

If f is continuous on [a, b], then the function \boldsymbol{g} defined by $\boldsymbol{g}(\boldsymbol{x})=\int_{\boldsymbol{a}}^{\boldsymbol{x}} \boldsymbol{f}(\boldsymbol{t}) \boldsymbol{d} \boldsymbol{t} a \leq t \leq b$ is continuous on $[\boldsymbol{a}, \boldsymbol{b}]$ and differentiable on $(\boldsymbol{a}, \boldsymbol{b})$, and $g^{\prime}(x)=f(x)$

Proof: Refer to the Book
Example 1: Find the derivative of each of the following function.
a) $g(x)=\int_{0}^{x} \sqrt{1+t^{2}} d \boldsymbol{t}$
b) $f(x)=\int_{1}^{x^{4}} \sec t d t$
c) $y=\int_{1}^{\cos x}(t+\sin t) d t$

The Fundamental Theorem of Calculus, Part 2
If f is continuous on $[\boldsymbol{a}, \boldsymbol{b}]$ and \boldsymbol{F} is any antiderivative of f, then $\int_{a}^{b} f(x) d x=F(b)-F(\boldsymbol{a})$.
Proof: Refer to Text Book
Example 2: Evaluate the following integrals
a) $\int_{-1}^{2} x^{3} d x$
b) $\int_{\pi}^{2 \pi} \sin (2 x) d x$
c) $\int_{-4}^{2} \frac{2}{x^{6}} d x$

The Fundamental Theorem of Calculus: Suppose \boldsymbol{f} is continuous on $[\boldsymbol{a}, \boldsymbol{b}]$

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$
2. If F is any antiderivative of f, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$

Note: If \boldsymbol{f} is continuous and non-negative on $[\boldsymbol{a}, \boldsymbol{b}]$, then $\int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) d \boldsymbol{x}$ is the area of the region \mathbf{R} bounded by the graph of the function $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$, the \boldsymbol{x} - axis on the interval $[\mathbf{a}, \mathbf{b}]$

Example 3: Evaluate each definite integral:
a) $\int_{0}^{2}(2 x+3) d x$
b) $\int_{0}^{4} x^{2} d x$

Properties of Definite Integrals:

1. $\int_{a}^{a} f(x) d x=0$
2. $\int_{a}^{b} k \cdot f(x) d x=k \cdot \int_{a}^{b} f(x) d x$
3. $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
4. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
5. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$

Example 4: Evaluate the following integrals
a) $\int_{-1}^{2}(3 t-1) d t$
b) $\int_{0}^{6}\left(2 x^{2}+x+3\right) d x$
c) $\int_{1}^{e} \frac{1}{x} d x$
d) $\int_{0}^{3} e^{2 x} d x$
e) $\int_{1}^{4} \frac{t^{3}+1}{\sqrt{t}} d t$
f) $\int_{3}^{5} \frac{x^{2}-9}{x+3} d x$
g) $\int_{1}^{5}\left(5 n^{-2}+n^{-3}\right) d n$

Example 4: Find the definite integral (integrals that require substitution)
a) $\int_{0}^{2} x\left(x^{2}+3\right)^{4} d x$
b) $\int_{0}^{1} 3 x^{2} e^{x^{3}} d x$
c) $\int_{0}^{1} 5 x \cdot \sqrt[3]{1+x^{2}} d x$

Area between Two Curves

In the last section, we found the area under the curve and above the x -axis. In this section we will expand it to finding the area when we have 2 curves.

Let be $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x})$ functions whose graphs are shown in the figure below. The area A of the shaded region bounded by the two functions on the interval [a, b] is given by:

$$
A=\int_{a}^{b}|f(x)-g(x)| d x=\int_{a}^{b}[\text { Top function }- \text { Bottom function }] d x
$$

Example 1: Find the area between $\boldsymbol{y}=\boldsymbol{x}^{2}+4$ and $\boldsymbol{y}=\mathbf{0}$ on the interval $[-2,1]$

Example 2: Find the area between the $f(x)=-x^{2}+1$ and $g(x)=2 x+4$ between $\boldsymbol{x}=\mathbf{- 1}$ and $\boldsymbol{x}=\mathbf{2}$; see figure below

Example 3: Find the area between each of the following curves.
a) $f(x)=5-x^{2}, g(x)=x^{2}-3$
b) $f(x)=x^{2}-5 x+4, g(x)=-(x-1)^{2}$
c) $y=x^{3}, y=x$
a) $f(x)=x^{2}-30, g(x)=10-3 x$

